Heart rate vARiability and physical activity in inpatient treatMent of burnOut and DepressIon (HARMODI): protocol of a cross-sectional study with up to 8-week follow up ======================================================================================================================================================================== * Wiebke Turner * Annette Brühl * Heinz Böker * Beate Schulze * Katja Marschall * Roberto La Marca * Michael Pfaff * Thomas Russmann * Arno Schmidt-Trucksäss ## Abstract **Introduction** Chronic stress can cause an imbalance within the autonomic nervous system, thereby affecting cardiovascular and mental health. Physical activity (PA) may have a positive effect on the autonomic nervous system and stress-related disorders, such as depression and burnout. Heart rate variability (HRV) is a non-invasive marker of the autonomic nervous system. However, limited and inconsistent data exist on the exact relationship between HRV, PA and depression and burnout symptoms. The HARMODI study aims to explore whether HRV is a feasible marker of depression and burnout symptoms and aims to evaluate the role of PA in the treatment of stress-related disorders. **Methods and analyses** This is an observational study with a cross-sectional up to 8 week follow-up study design. A total of 153 patients, undergoing psychiatric inpatient treatment with burnout syndrome (Z73) and depressive episode (F32 or F33) or adjustment disorder (F43.2), will be recruited. Data on depression and burnout symptoms, HRV recordings (24-hour, supine, standing and exercise stress test), cognitive function, cardiorespiratory fitness, cardiovascular health, balance and strength will be collected at baseline (T1) and after up to 8 weeks (T2). Continuous data on PA and Ecological Momentary Assessments of exhaustion, mood and tension will be monitored daily throughout inpatient treatment. Multiple regression models, adjusted for potential confounders, will assess the association between HRV as the primary outcome, PA and depression and burnout severity score. **Ethics and dissemination** The protocol has been approved by Swiss Ethics Committee, Cantonal Ethics Committee Zürich. Results of HARMODI will be disseminated through peer-reviewed journals and conference presentations. **Trial registration number** [NCT05874856](http://bmjopen.bmj.com/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT05874856&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom). * Depression & mood disorders * Exercise Test * PSYCHIATRY * Burnout ### Strengths and limitations of this study * This observational study aims to improve diagnosis and treatment of stress-related disorders by examining the role of heart rate variability under different recordings: 24-hour, supine, standing and exercise stress test. * While several studies have not investigated the role of physical activity in much detail, HARMODI study will monitor physical activity objectively throughout inpatient treatment. * Innovative methods, using smartphone-based Ecological Momentary Assessments of exhaustion, mood and tension, will assess symptom fluctuation throughout inpatient treatment. * This is an observational single-site study design that may limit generalisability and precludes causality. ## Introduction Stress is a major problem in society; the total cost of work-related stress in the Western World has been estimated to be up to US$187 billion per year.1 Chronic stress can affect cardiovascular and mental health through an autonomic nervous system imbalance.2 Generating knowledge about stress and its relationship with the autonomic nervous system is important for the diagnosis and treatment of stress-related disorders, such as depression and burnout. There is little published information on the treatment process of inpatients with stress-related disorders and international guidelines for the treatment of burnout have not been established yet.3–6 A non-invasive marker of the autonomic nervous system is heart rate variability (HRV), assessing the differences in time intervals between consecutive heartbeats.7 HRV reflects the ability of the body’s regulatory systems to adapt to psychological and environmental stress.8 Extensive research has shown that HRV is not only linked to cardiovascular health,9 10 but also to cognitive performance,11 emotion regulation12 and social behaviour.13 Thus, numerous studies have observed lower HRV in persons with depression and burnout.14–17 To date, very few studies have investigated the association between HRV and severity of depression18 19 and burnout.15 20 However, other authors could not confirm an association between HRV and severity of depression.21 22 In addition, limited23 24 and inconsistent25 26 findings are available on the impact of inpatient treatment on HRV and the recovery of HRV in parallel with improved clinical symptoms. The existing literature lacks clarity regarding which type of HRV recording and which HRV parameter is applicable in displaying certain symptoms of depression and burnout. Whether HRV changes after inpatient treatment of stress-related disorders remains unclear. Physical activity (PA) in itself can also positively impact HRV27 and is essential in the treatment of burnout and depression. On the one hand, individuals with mental illness engage in less PA and exhibit more sedentary behaviour.28 Cardiorespiratory fitness is associated with burnout29 30 and depression31 severity. Furthermore, patients with depression have a higher risk to develop cardiovascular diseases.32–36 On the other hand, PA can improve depression37–39 and burnout symptoms.40 Individuals with depression41 and burnout42 also suffer from cognitive deficits and PA has shown promising effects on cognitive function in inpatient treatment for major depression.43 44 Nonetheless, little is known about the exact role of PA in inpatient treatment of stress-related disorders. Sports therapy is offered with varying scope as part of inpatient treatment of stress-related disorders.45 Objective data on PA, cognitive function and physical fitness may show a potential association with HRV and symptoms of burnout and depression. New findings on HRV, PA, cognitive function, physical fitness and symptoms of burnout and depression will contribute to a deeper understanding of the role of sports therapy in inpatient treatment of stress-related disorders. A growing body of research uses Ecological Momentary Assessments (EMA) to analyse symptom fluctuations and PA over time in real-time and real-life situations.46 EMA is a research method to capture current state, feelings or behaviour of an individual with multiple assessments in their natural environment.47 EMA complement retrospective self-report assessments that are frequently affected by recall bias.48 Recently, EMA studies have demonstrated a link between PA and positive affect49–51 and between PA and emotional exhaustion.52 Nevertheless, our understanding of how symptoms may change over the treatment process is notably underdeveloped. To the best of our knowledge, no studies have examined EMA of psychological ratings and PA throughout inpatient treatment of stress-related disorders. HARMODI study aims to give important insights into the tripart relationship between HRV, PA and symptoms of depression and burnout, to optimise treatment programmes and support public health policymaking. The main research questions for our three research projects are: ### Project 1 Is there an association between HRV and depression severity at admission (baseline)? ### Project 2 Is there a difference between HRV, cardiorespiratory fitness, PA, cardiovascular health, cognitive function, strength and balance performance at baseline (T1) and after an up to 8 week inpatient treatment of depression and burnout (T2)? Is there a difference between responders and non-responders regarding baseline HRV, cardiorespiratory fitness, PA, sleep, cognitive function, strength, balance performance and cardiovascular health? ### Project 3 How do EMAs of exhaustion, mood and tension change throughout the 8 week inpatient treatment? Is there an association between PA and EMA of exhaustion, mood and tension? ## Methods ### Study design and setting This is an observational study with a cross-sectional up to 8 week follow-up study design, divided into three research projects. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) recommendations53 will be used to report the HARMODI protocol. The HARMODI study started in February 2023 at the Clinica Holistica Engiadina and will be conducted presumably until October 2024. The Clinica Holistica Engiadina is an inpatient psychiatric clinic, specialised in the treatment of stress-related disorders, such as depressive, anxiety, psychosomatic and stress disorders as well as burnout syndrome, with approximately 400 patients annually. All study participants are undergoing a similar multimodal treatment. The multimodal treatment generally consists of the following therapies, adjusted as needed: psychotherapy, sports therapy, art and dance therapy, psychopharmacotherapy, physical medicine, physiotherapy and selected interventions from traditional chinese medicine. A submaximal endurance test with lactate measurement and HRV recording are performed at the beginning and end of sports therapy. Sports therapy is based on an individual training plan for the medical training therapy, outdoor walking groups, Qi Gong, spinal gymnastics and relaxation exercises. Depending on indication, boxing, climbing or Escrima, a martial art originating from the Philippines, is prescribed. In addition, the clinic is located in a unique natural landscape that encourages patients to exercise independently in nature, that is, walking, hiking or cross-country skiing depending on season. ### Study participants and recruitment Patients referred to the psychiatric clinic will be screened for study participation. Inclusion criteria are as follows: (1) diagnosis of depressive episode (F32 or F33), or adjustment disorder (F43.2) and burnout syndrome (Z73) without psychotic symptoms according to International Statistical Classification of Diseases and Related Health Problems (ICD)-10, (2) German language skills,3 (3) smartphone ownership and4 (4) age 18–65 years. Exclusion criteria are adapted from the Guidelines for Reporting Articles on Psychiatry and Heart rate variability (GRAPH).54 Exclusion criteria include, according to medical history, the following: * Comorbid manifest psychiatric disorder, including post-traumatic stress disorder, anxiety disorder and panic disorder. * Current treatment with antiarrhythmic drugs and tricyclic antidepressant medication. * Factors precluding submaximal endurance test: history of cardiac diseases, such as myocardial infarction, stroke and unstable heart failure within the previous 6 months impairing exercise testing and training and heart failure (New York Heart Association functional classes III and IV). * Factors severely affecting HRV parameters: type 1 and 2 diabetes mellitus with clinically proven cardiovascular autonomic neuropathy, chronic obstructive pulmonary disease Global Initiative for Obstructive Lung Disease stage≥III, ongoing cancer treatment, moderate to severe chronic kidney disease (estimated Glomerular Filtration Rate stage 3a (G3a) or worse (≤45 mL/min)), current eating disorders, such as anorexia nervosa and bulimia nervosa, excessive drug or alcohol abuse. * Known pregnancy. * Suicidal thoughts precluding informed consent. ### Participant timeline and procedures The investigator at site verbally presents the project to eligible patients 1 day after admission to the clinic. Interested patients have 1 day to consider study participation. Comorbid psychiatric exclusion criteria, suicidal thoughts, current eating disorders and drug or alcohol abuse will be screened with the German version of the Mini-International Neuropsychiatric Interview (MINI). The MINI is a structured diagnostic interview developed for 17 Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) and ICD-10 axis I psychiatric disorders that can be assessed within 15 min.55 Participants will be enrolled in baseline procedures if all of the criteria are met. Figure 1 presents an overview of the enrolment procedure. HRV recordings will be scheduled 5 days after admission to ensure acclimatisation as the clinic is located at 1438 m above sea level. Study appointments take place at the same time of the day for both admission and discharge to eliminate the influence of circadian rhythm on HRV.56 HRV measurement will be performed according to GRAPH54 by experienced sport scientists. All study appointments will be integrated into the clinic schedule to ensure a smooth process. ![Figure 1](http://bmjopen.bmj.com/http://bmjopenuat.stage.highwire.org/content/bmjopen/14/6/e081299/F1.medium.gif) [Figure 1](http://bmjopen.bmj.com/content/14/6/e081299/F1) Figure 1 Study design and participant timeline. ### Questionnaires #### Questionnaires at T1 PA performed 1 week before admission will be assessed with the 5-item German version of the Simple Physical Activity Questionnaire (SIMPAQ).57 The SIMPAQ was developed to determine PA and sedentary behaviour in patients with mental illness.58 Whether participants exercise to avoid feeling tense, will be self-rated with one item of the German version59 of the Exercise Dependence Scale (EDS),60 with a 6-point Likert scale, ranging from 1 (*never*) to 6 (*always*).59 Participants will be asked whether they continue to exercise when feeling tired with one item of the German version61 of the Commitment to Exercise Scale (CES).62 Rating will be performed on a visual analogue scale (*never to always*).61 Using the 40-item Hamburger Burnout Inventory (HBI), severity of burnout symptoms will be self-rated on a 9-point Likert scale, ranging from 1 (*not at all*) to 9 (*totally true*), with higher scores indicating worse outcome.63 In addition, the 14-item German version of the Shirom-Melamed-Burnout-Measure (SMBM)64 will be used to distinguish between physical, cognitive and emotional symptom severity. The SMBM has a 7-point Likert scale, ranging from 1 (*never*) to 7 (*always*),65 with higher scores representing worse outcome and greater exhaustion. #### Questionnaires at T1 and T2 Depression severity will be self-rated with the German version of the66 21-item Beck Depression Inventory-II (BDI-II).67 Participants will be asked to describe their depressive symptoms over the past 2 weeks on a 4-point Likert scale, ranging from 0 (*no presence of a symptom*) to 3 (*strong presence of a symptom*),68 with higher scores indicating worse depression. The German version of the 9-item short form69 70 of the original 21-item Maastricht Vital Exhaustion Questionnaire (MVEQ)71 will measure change of exhaustion symptoms. Participants will report whether they feel exhausted 0 (*no*), 1 (*uncertain*) and 2 (*yes*), with total scores 4–10 indicating mild, 11–14 substantial and 15–18 severe vital exhaustion.69 Sleep quality will be evaluated with the German version of the 19-item Pittsburgh Sleep Quality Index (PSQI).72 A total score >5 separates between good and poor sleep.72 The German version of the 21-item Beck Anxiety Inventory (BAI) will assess anxiety symptoms during the last 7 days on a 4-point Likert scale ranging from 0 (*not at all*) to 3 (*severely*).73 The BAI is a user-friendly, valid international used inventory, with total scores 0–7 indicating minimal anxiety, 8–15 mild, 16–25 moderate and 26–63 clinical anxiety.73 74 The German version of the 53-item Brief Symptom Inventory (BSI) will be used to determine subjective symptoms during the past 7 days on a 5-point Likert scale, ranging from 0 (*not at all*) to 4 (*extremely*), with a higher total score indicating worse symptom severity.75 The BSI is highly accepted and used worldwide.76 The 14-item German version of the Snaith-Hamilton-Pleasure Scale (SHAPS-D) will be used to assess anhedonia on a 4-point Likert scale, ranging from 1 (*I fully agree*) to 4 (*I do not agree at all*),77 with higher scores indicating greater anhedonia. The SHAPS is a valid instrument to measure the experience of positive valence in depressed individuals.78 Furthermore, current mood will be appraised before HRV supine recording with the 12-item short version of the Multidimensional Mood Questionnaire (MDMQ).79 The MDMQ is a questionnaire with a 5-point Likert scale and three dimensions, with higher scores indicating a positive-toned pole, good mood, alertness, and calm state.80 ### Heart rate variability and cardiovascular health #### Supine and standing HRV HRV will be recorded in supine and standing position between 7.00 and 9.00 am in a room where light and temperature are stable within the range of 20–22 C°. Participants will be instructed to refrain from intense training 24 hours before recording, fast since 10 pm the day before and abstain from tobacco intake 30 min before recording. Women will be interviewed on the date of their last period or menopausal state. After 10 min of acclimatisation, the 5 min supine recording will start, followed by the 6 min standing recording. Using the ECG device Faros 180 (Bittium Biosignals, Kuopio, Finland) and HRV-Scanner software V.3.05.29 (BioSign GmbH, Ottenhofen, Germany), HRV will be measured with a sampling rate of 1000 Hz. Details on HRV recording procedure are described in online supplemental appendix 1. ### Supplementary data [[bmjopen-2023-081299supp001.pdf]](pending:yes) #### Cardiovascular health Brachial systolic and diastolic blood pressure as well as pulse wave velocity measurements will be assessed after 15 min in supine position, three times at 1 min intervals, according to guidelines.81 82 Using a valid oscillometric cuff-based sphygmomanometer on the left arm (Custo screen 310, custo med GmbH, Ottobrunn, Germany),83 cardiovascular health measurements will be carried out. #### Åstrand-ryhming test HRV Using Faros 180 ECG with a sampling rate of 1000 Hz, Åstrand-Ryhming test HRV will be recorded during and 6 min post Åstrand-Ryhming test. A chest strap (Polar T31, H10 sensor; Polar Electro Oy, Kempele, Finland) will display participant’s heart rate on the mechanically braked bicycle ergometer (motion cycle 800 med; Proxomed Medizintechnik GmbH, Alzenau, Germany). Cardiorespiratory fitness will be tested with the single-stage Åstrand-Ryhming test,84 a submaximal test to estimate maximal oxygen uptake (V̇O2max) over 6 min with a gender-sensitive nomogram and age-correction factor.85 The Åstrand-Ryhming test is safe, one of the most common used,86 valid submaximal tests87 and has previously been used in stress-related disorders.30 88 Participants will paddle with 60–70 rounds per minute at 25 watts for 3 min to warm-up. After warm-up, watts will be adjusted to keep participants’ heart rate between 120 and 170 beats per minute (bpm) (age>40 years), respective 130–170 bpm (age<40 years). Heart rate and perceived exertion, based on Borg rating scale89 will be documented every minute. After the Åstrand-Ryhming test, participants will be asked to keep sitting on the bicycle for the 6 min recovery period, without talking and paddling. #### 24-hour HRV Using Faros 180 ECG, HRV will be recorded for 24 hours with a sampling rate of 500 Hz; 24-hour recording will start in the afternoon. Participants will be asked to report their sleep onset and time of awakening, defined as ‘switching off light’ respectively ‘switching on light’. Sleep latency will be taken into consideration in HRV analyses; 30 min after the reported sleep onset time will be considered as sleep onset. The accelerometer data of the ECG will be inspected to verify inactivity. #### HRV parameter processing Analyses of HRV data preparation and parameter calculation will follow recommendations of the GRAPH.54 Raw HRV data will be imported into Kubios HRV Scientific (V.4.0.1.) to prepare data for artefact correction. Kubios offers a QRS detection algorithm, based on the Pan-Tompkins algorithm, to detect the R-wave of the imported raw ECG data.90 91 ECG data will be analysed with automatic artefact correction,92 inspected visually and corrected manually if needed.93 Supine and standing HRV will be analysed in 5 min segments. Time (SDNN, RMSSD and pNN50), frequency (LF, LF(nu), HF, HF(nu) and total power) and non-linear parameters (DFA a1) will be calculated for supine and standing HRV.7 Exercise stress test HRV will be described as event (during Åstrand-Ryhming test) and postevent in 5 min segments.93 Postevent HRV will be analysed with time (SDNN and RMSSD), frequency (LF, LF(nu), HF, HF(nu) and total power) and non-linear parameters (SD1, SD2, DFA a1).94 Event HRV will be analysed with DFA a1;95 24-hour HRV will be analysed in 18-hour segment.7 Time domain parameters, such as SDNN, SDANN, RMSSD7 and pNN50, will be calculated in the 24-hour recording.96 97 Table 1 lists the planned HRV parameters. View this table: [Table 1](http://bmjopen.bmj.com/content/14/6/e081299/T1) Table 1 Summary of the planned HRV parameter and their physiological explanation7 93 129 ### Cognitive function Cognitive function will be tested with THINC-Integrated Tool (THINC-it), a valid digitalised cognitive assessment battery that has already been utilised in depressed patients98 99 and has demonstrated sensitivity to change.100 THINC-it consists of a self-rated questionnaire, the Perceived Deficits Questionnaire and variants of four cognitive tests: One-Back Test, Digit Symbol Substitution Test, Trail Making Test-Part B and Choice Reaction Time Identification Task.98 ### Balance and strength In order to better characterise the determinants of PA, balance and strength tests will be conducted. Balance performance will be screened with the reliable and feasible One-Leg Standing test (OLS).101 The sport scientist will instruct participants to fold their hands behind the back, place the free foot on the knee of the standing leg and look at the wall marker. After 10 s, participants will be asked to close their eyes and after another 10 s, lay their head back. Time will be stopped, if the free foot loses contact with the standing leg, participants compensate an unstable stance with jumping, hands lose contact or eyes are open. The time in seconds for both legs until the stance cannot be maintained will be added.101 After the OLS, participants will perform the 10-time chair rise test102 from a chair with 45 cm height and 38 cm depth. The reciprocal of time needed to fully rise 10 times without using the upper extremities will be multiplied by 100. Consequently, good performance will be represented by high scores.103 Hand grip strength will be tested with a handheld dynamometer (Jamar Smart Hand Dynamometer, Performance Health Supply, Cedarburg, USA) in a seated position, with shoulder adducted, elbow flexed at 90°, wrist position neutral and handle position 2.104 105 Participant’s dominant hand will be tested and the best out of the three attempts,106 with 60 s rest in between,107 will be chosen for analyses. ### Physical activity During up to 8 week inpatient treatment, participants will be asked to wear a GENEActiv accelerometer (Activinsights, Kimbolton, UK) on their non-dominant wrist. GENEActiv is a valid tool to monitor sedentary behaviour,108 PA109 as well as sleep110 and has been used in depressed individuals before.51 Data sampling frequency will be set to 87.5 Hz; 14 hours per day of wear time compliance will be necessary for statistical analyses.111 A form with technical specifications of the accelerometer will address possible privacy concerns of the participant.112 ### EMA of exhaustion, tension and mood Participants will download a customised app, developed by PsyMate (ECS International BV, Maastricht, Netherlands) on their smartphone. PsyMate has been frequently used to study self-reported symptoms, such as fatigue,113 depression and mood.48 Current mood,114 physical tiredness,79 mental exhaustion and tension level115 116 will be rated on a 5-point Likert scale, ranging from 1 (*not at all*) to 5 (*completely*). Online supplemental appendix 2 describes the item wording in more detail. A prompt will remind the participants daily at eight pm to answer the questions. The app will be uninstalled, if daily rating is a burden for the participants. However, uninstalling the app does not qualify a participant as drop-out. ### Supplementary data [[bmjopen-2023-081299supp002.pdf]](pending:yes) ### Outcomes Primary endpoint will be HRV, expressed with the parameter root mean square of successive differences between normal heart beats (RMSSD) in milliseconds. Particular focus is the RMSSD, a robust parasympathetic nervous system parameter that is less influenced by breathing.8 93 Secondary outcomes will be questionnaire symptom severity scores, cardiorespiratory fitness, cognitive function, balance, hand grip, leg strength, cardiovascular health, daily exhaustion, mood and tension level, self-reported PA preadmission as well as objective measured PA and sleep during treatment. Table 2 provides an overview of every outcome measure with respective timeframe. View this table: [Table 2](http://bmjopen.bmj.com/content/14/6/e081299/T2) Table 2 Outcome measures with respective time point ### Sample size Based on relevant literature on inpatients with stress-related disorders and HRV,18 24 25 correlation between RMSSD and BDI-II score at baseline (T1) was estimated with r=−0.25 (power 80%, two-sided α=0.05). Simulations showed a need for 123 participants at T1 for cross-sectional analysis between RMSSD and BDI-II. Due to various HRV measurement procedures,23 117–119 literature does not provide suitable estimates for within subject differences in RMSSD at T1 and T2. However, HRV data from former patients at the Clinica Holistica Engiadina were used for estimation of within subject differences. Simulations showed a need for 135 participants for within subject differences in RMSSD at T1 and T2 (power 80%, two-sided α=0.05, paired t-test, correlation between groups=0.4). Based on reported dropout rates,22 24 26 dropout rate was expected to be 13%. In conclusion, a total sample size of 153 participants will be planned for HARMODI. ### Data management Project data will be managed using REDCap electronic data capture tools hosted at the University of Basel, Switzerland120 121 and will be double-checked to avoid human error. Data, generated by the customised PsyMate app, will be securely and anonymously stored on a server provided by PsyMate, with adherence to the General Data Protection Regulation Rules. Personal information will only be accessible to authorised personnel who require the data to fulfil their duties within the scope of the research project. The principle investigator will be responsible for the secure storage of the identification list. Adverse events, that occur as a result of participation in the study, will be documented and if necessary, reported to the Ethics Committee. Missing data will not be imputed, but will be documented for respective reasons. In the event of a withdrawal of consent, data already collected will be included in the data analyses. HARMODI project is classified in risk category A according to Human Research Ordinance, Article 7. Thus, data monitoring will be limited to a yearly monitoring visit at site by the sponsor. Data on statistical code, such as GENEActiv R script or HRV Kubios settings, will be available from a Zenodo repository. ### Statistical methods Multiple regression analyses adjusted for potential confounders (age, sex, body mass index (BMI), PA level, blood pressure with intake of beta-adrenoreceptor antagonists and average nicotine consumption) will examine the association between primary outcome (RMSSD) and symptom severity (total score of BDI-II questionnaire) at T1 and T2. Analyses will be performed, respectively, for supine, standing, 24-hour and exercise stress test HRV. Paired t-tests will be used to analyse changes between HRV, exhaustion symptoms, cardiorespiratory fitness, sleep, cognitive function, strength, balance and PA between T1 and T2. A Wilcoxon signed-rank test will be performed if data are not normally distributed. For a group comparison, responders will be defined as >50% BDI-II score reduction and non-responders as <50% BDI-II score reduction. Unpaired t-tests will be carried out to compare psychophysiological and behavioural parameters (HRV, cardiorespiratory fitness, self-reported and objectively measured PA, sleep, cognitive function, strength, balance and cardiovascular health) between responders and non-responders. T-tests will be corrected for multiple testing.122 123 In the explorative analyses, multilevel vector autoregressive models will be computed to detect between-time and changes in PA, sleep and EMA of exhaustion, mood, and tension. Statistical analyses will be performed using R, V.4.2.1 (R Foundation for Statistical Computing, Vienna, Austria). Level of significance will be two-sided α=0.05. Missing data will not be imputed. Drop-out rate was considered in the sample size calculation. ### Patient and public involvement Patients and the public were not involved in the design of the study. ## Ethics and dissemination Swiss Ethics Committee, Cantonal Ethics Committee Zürich, approved HARMODI protocol on 9 January 2023 (no. 2022-01871). Before recruitment, written informed consent (see online supplemental appendix 3) will be obtained by the investigator at site. Findings of HARMODI will be published in peer-reviewed journals, presented at conferences, described in local newspapers and posted on website of Clinica Holistica Engiadina. ### Supplementary data [[bmjopen-2023-081299supp003.pdf]](pending:yes) ## Discussion HARMODI study will demonstrate whether HRV is a suitable diagnostic marker in the treatment of stress-related disorders. Monitoring HRV, physical and cognitive performance, PA and psychological symptoms will gain a better understanding of the treatment process of inpatients with stress-related disorders. HARMODI study has an explorative and pragmatic design with the strength that findings can in future be directly implemented in the treatment of stress-related disorders. However, this cross-sectional single-site design has some limitations. It is important to bear in mind that study participants will be recruited from a psychiatric clinic, where a control group cannot be implemented. Therefore, causality is precluded and generalisability of study results are compromised. To overcome this obstacle, we will compare outcome variables between responders and non-responders. Another limitation is the expected variability of the primary outcome, HRV. HRV parameters are influenced by age,124 gender,125 BMI,126 PA level,27 blood pressure,21 caffeine127 and nicotine intake128 and will be considered as covariates. Other confounders, in particular change of medication and different PA levels throughout inpatient treatment cannot be completely excluded, but will be monitored. To the best of our knowledge, HARMODI is the first study combining follow-up data from (1) subjective psychological symptom ratings and (2) objective HRV recordings, cardiovascular health measurements, cognitive function tests and physical fitness assessments, with (3) daily objective PA data and subjective EMA of psychological symptoms throughout inpatient treatment. Results of HARMODI will provide valuable information on optimising treatment programmes for patients with stress-related disorders. These findings will strengthen the knowledge base on HRV as a health marker and demonstrate the role of PA in the treatment of stress-related disorders. In this regard, HARMODI project might underscore the importance of PA, as a cost-effective treatment option, for public decision-makers. ## Ethics statements ### Patient consent for publication Not applicable. ## Acknowledgments The authors are grateful to all study participants who, despite their exhaustion, will volunteer to participate in HARMODI study. Without their contribution, research would not be possible. We thank all involved clinic and study staff. We are grateful to those who shared their knowledge in implementing this project. We appreciate the support of PsyMate. ## Footnotes * Contributors WT, AB, HB, BS, KM, RLM, MP, TR and AS-T contributed to the study concept and design. WT drafted the manuscript and is responsible for conducting the study on site. All authors have read and approved the final manuscript. * Funding This project is funded by the Clinica Holistica Engiadina (principle investigator: Dr MP up to 30 June 2023; Dr TR since 1 July 2023), Switzerland and by own resources of the Department of Sport, Exercise and Health, Division Sports and Exercise Medicine (Sponsor: Prof. AS-T) of the University Basel, Switzerland. Grant number: N/A. * Competing interests WT is funded through an industry-sponsored PhD by the Clinica Holistica Engiadina and represents the role of the investigator at site. Clinica Holistica Engiadina employed Dr MP (until 30 June 2023) and KM (until 1 January 2024). Clinica Holistica Engiadina also employs Dr TR (since 1 July 2023) and Dr RLM. Professor AS-T, Professor HB and Dr BS are members of the scientific advisory board of the Clinica Holistica Engiadina. Other conflicts of interest are not declared. * Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting or dissemination plans of this research. * Provenance and peer review Not commissioned; externally peer reviewed. * Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise. [http://creativecommons.org/licenses/by-nc/4.0/](http://creativecommons.org/licenses/by-nc/4.0/) This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: [http://creativecommons.org/licenses/by-nc/4.0/](http://creativecommons.org/licenses/by-nc/4.0/). ## References 1. Hassard J , Teoh KRH , Visockaite G , et al . The cost of work-related stress to society: a systematic review. J Occup Health Psychol 2018;23:1–17. [doi:10.1037/ocp0000069](http://dx.doi.org/10.1037/ocp0000069) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1037/ocp0000069&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 2. O’Connor DB , Thayer JF , Vedhara K . Stress and health: a review of psychobiological processes. Annu Rev Psychol 2021;72:663–88. [doi:10.1146/annurev-psych-062520-122331](http://dx.doi.org/10.1146/annurev-psych-062520-122331) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1146/annurev-psych-062520-122331&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 3. Kakiashvili T , Leszek J , Rutkowski K . The medical perspective on burnout. Int J Occup Med Environ Health 2013;26:401–12. [doi:10.2478/s13382-013-0093-3](http://dx.doi.org/10.2478/s13382-013-0093-3) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 4. Buckley L , Berta W , Cleverley K , et al . What is known about paediatric nurse burnout: a scoping review. Hum Resour Health 2020;18:9. [doi:10.1186/s12960-020-0451-8](http://dx.doi.org/10.1186/s12960-020-0451-8) 5. Busireddy KR , Miller JA , Ellison K , et al . Efficacy of interventions to reduce resident physician burnout: a systematic review. J Grad Med Educ 2017;9:294–301. [doi:10.4300/JGME-D-16-00372.1](http://dx.doi.org/10.4300/JGME-D-16-00372.1) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.4300/JGME-D-16-00372.1&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 6. Wilczyńska D , Qi W , Jaenes JC , et al . Burnout and mental interventions among youth athletes: a systematic review and meta-analysis of the studies. Int J Environ Res Public Health 2022;19:10662. [doi:10.3390/ijerph191710662](http://dx.doi.org/10.3390/ijerph191710662) 7. Marek M , Bigger JT , Camm AJ , et al . Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J 1996;17:354–81. [doi:10.1093/oxfordjournals.eurheartj.a014868](http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a014868) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1093/oxfordjournals.eurheartj.a014868&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=8737210&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=A1996UF54400011&link_type=ISI) 8. Shaffer F , Ginsberg JP . An overview of heart rate variability metrics and norms. Front Public Health 2017;5:258. [doi:10.3389/fpubh.2017.00258](http://dx.doi.org/10.3389/fpubh.2017.00258) 9. Tsuji H , Larson MG , Venditti FJ Jr , et al . Impact of reduced heart rate variability on risk for cardiac events: the Framingham heart study. Circulation 1996;94:2850–5. [doi:10.1161/01.cir.94.11.2850](http://dx.doi.org/10.1161/01.cir.94.11.2850) [Abstract/FREE Full Text](http://bmjopen.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTQ6ImNpcmN1bGF0aW9uYWhhIjtzOjU6InJlc2lkIjtzOjEwOiI5NC8xMS8yODUwIjtzOjQ6ImF0b20iO3M6MjY6Ii9ibWpvcGVuLzE0LzYvZTA4MTI5OS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 10. Huikuri HV , Stein PK . Heart rate variability in risk stratification of cardiac patients. Prog Cardiovasc Dis 2013;56:153–9. [doi:10.1016/j.pcad.2013.07.003](http://dx.doi.org/10.1016/j.pcad.2013.07.003) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.pcad.2013.07.003&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=24215747&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 11. Thayer JF , Hansen AL , Saus-Rose E , et al . Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med 2009;37:141–53. [doi:10.1007/s12160-009-9101-z](http://dx.doi.org/10.1007/s12160-009-9101-z) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1007/s12160-009-9101-z&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=19424767&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 12. Beauchaine TP , Thayer JF . Heart rate variability as a transdiagnostic biomarker of psychopathology. Int J Psychophysiol 2015;98:338–50. [doi:10.1016/j.ijpsycho.2015.08.004](http://dx.doi.org/10.1016/j.ijpsycho.2015.08.004) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.ijpsycho.2015.08.004&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=26272488&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 13. Porges SW . The Polyvagal perspective. Biol Psychol 2007;74:116–43. [doi:10.1016/j.biopsycho.2006.06.009](http://dx.doi.org/10.1016/j.biopsycho.2006.06.009) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.biopsycho.2006.06.009&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=17049418&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=000243709800002&link_type=ISI) 14. Koch C , Wilhelm M , Salzmann S , et al . A meta-analysis of heart rate variability in major depression. Psychol Med 2019;49:1948–57. [doi:10.1017/S0033291719001351](http://dx.doi.org/10.1017/S0033291719001351) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1017/S0033291719001351&link_type=DOI) 15. Lennartsson AK , Jonsdottir I , Sjörs A . Low heart rate variability in patients with clinical burnout. Int J Psychophysiol 2016;110:171–8. [doi:10.1016/j.ijpsycho.2016.08.005](http://dx.doi.org/10.1016/j.ijpsycho.2016.08.005) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.ijpsycho.2016.08.005&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 16. Sgoifo A , Carnevali L , Alfonso M de los AP , et al . Autonomic dysfunction and heart rate variability in depression. Stress 2015;18:343–52. [doi:10.3109/10253890.2015.1045868](http://dx.doi.org/10.3109/10253890.2015.1045868) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.3109/10253890.2015.1045868&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=26004818&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 17. Koenig J , Kemp AH , Beauchaine TP , et al . Depression and resting state heart rate variability in children and adolescents — A systematic review and meta-analysis. Clin Psychol Rev 2016;46:136–50. [doi:10.1016/j.cpr.2016.04.013](http://dx.doi.org/10.1016/j.cpr.2016.04.013) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.cpr.2016.04.013&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=27185312&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 18. Kemp AH , Quintana DS , Gray MA , et al . Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry 2010;67:1067–74. [doi:10.1016/j.biopsych.2009.12.012](http://dx.doi.org/10.1016/j.biopsych.2009.12.012) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.biopsych.2009.12.012&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=20138254&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=000277918000009&link_type=ISI) 19. Chen W , Zhong Q , Chen H , et al . Heart rate variability in children and adolescents with major depressive disorder: a systematic review and meta-analysis. J Affect Disord 2023;335:204–15. [doi:10.1016/j.jad.2023.05.022](http://dx.doi.org/10.1016/j.jad.2023.05.022) 20. Traunmüller C , Stefitz R , Gaisbachgrabner K , et al . Psychophysiological concomitants of burnout: evidence for different subtypes. J Psychosom Res 2019;118:41–8. [doi:10.1016/j.jpsychores.2019.01.009](http://dx.doi.org/10.1016/j.jpsychores.2019.01.009) 21. Sarlon J , Staniloiu A , Kordon A . Heart rate variability changes in patients with major depressive disorder: related to confounding factors, not to symptom severity? Front Neurosci 2021;15:675624. [doi:10.3389/fnins.2021.675624](http://dx.doi.org/10.3389/fnins.2021.675624) 22. La Marca R , Pallich G , Holtforth M grosse , et al . Higher resting cardiovagal activity predicts larger decrease of depressive symptoms in inpatients treated for stress-related depression. J Psychophysiol 2022;36:254–66. [doi:10.1027/0269-8803/a000299](http://dx.doi.org/10.1027/0269-8803/a000299) 23. Riffer F , Streibl L , Sprung M , et al . Changes and differences of heart rate variability of patients in a psychiatric rehabilitation clinic. Neuropsychiatr 2016;30:198–206. [doi:10.1007/s40211-016-0204-z](http://dx.doi.org/10.1007/s40211-016-0204-z) 24. Tatschl JM , Hochfellner SM , Schwerdtfeger AR . Implementing mobile HRV Biofeedback as Adjunctive therapy during inpatient psychiatric rehabilitation facilitates recovery of depressive symptoms and enhances autonomic functioning short-term: a 1-year pre–post-intervention follow-up pilot study. Front Neurosci 2020;14:738. [doi:10.3389/fnins.2020.00738](http://dx.doi.org/10.3389/fnins.2020.00738) 25. Neyer S , Witthöft M , Cropley M , et al . Reduction of depressive symptoms during inpatient treatment is not associated with changes in heart rate variability. PLoS One 2021;16:e0248686. [doi:10.1371/journal.pone.0248686](http://dx.doi.org/10.1371/journal.pone.0248686) 26. Orosz A , Federspiel A , Eckert A , et al . Exploring the effectiveness of a specialized therapy programme for burnout using subjective report and biomarkers of stress. Clin Psychol Psychother 2021;28:852–61. [doi:10.1002/cpp.2539](http://dx.doi.org/10.1002/cpp.2539) 27. Besnier F , Labrunée M , Pathak A , et al . Exercise training-induced modification in autonomic nervous system: an update for cardiac patients. Ann Phys Rehabil Med 2017;60:27–35. [doi:10.1016/j.rehab.2016.07.002](http://dx.doi.org/10.1016/j.rehab.2016.07.002) 28. Vancampfort D , Firth J , Schuch FB , et al . Sedentary behavior and physical activity levels in people with schizophrenia, bipolar disorder and major depressive disorder: a global systematic review and meta‐analysis. World Psychiatry 2017;16:308–15. [doi:10.1002/wps.20458](http://dx.doi.org/10.1002/wps.20458) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1002/wps.20458&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 29. De Moraes MG , Calais SL , Verardi CEL . The influence of physical fitness on the symptoms of burnout. J Phys Educ Sport 2019;19:945–51. [doi:10.5935/cadernosdisturbios.v19n1p51-64](http://dx.doi.org/10.5935/cadernosdisturbios.v19n1p51-64) 30. Lindegård A , Wastensson G , Hadzibajramovic E , et al . Longitudinal associations between cardiorespiratory fitness and stress-related exhaustion, depression, anxiety and sleep disturbances. BMC Public Health 2019;19:1726. [doi:10.1186/s12889-019-8081-6](http://dx.doi.org/10.1186/s12889-019-8081-6) 31. Herbsleb M , Schumann A , Lehmann L , et al . Cardio-respiratory fitness and autonomic function in patients with major depressive disorder. Front Psychiatry 2019;10:980. [doi:10.3389/fpsyt.2019.00980](http://dx.doi.org/10.3389/fpsyt.2019.00980) 32. Correll CU , Solmi M , Veronese N , et al . Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: a large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls. World Psychiatry 2017;16:163–80. [doi:10.1002/wps.20420](http://dx.doi.org/10.1002/wps.20420) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1002/wps.20420&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 33. Wu Q , Kling JM . Depression and the risk of myocardial infarction and coronary death: a meta-analysis of prospective cohort studies. Medicine (Baltimore) 2016;95:e2815. [doi:10.1097/MD.0000000000002815](http://dx.doi.org/10.1097/MD.0000000000002815) 34. Gan Y , Gong Y , Tong X , et al . Depression and the risk of coronary heart disease: a meta-analysis of prospective cohort studies. BMC Psychiatry 2014;14:371. [doi:10.1186/s12888-014-0371-z](http://dx.doi.org/10.1186/s12888-014-0371-z) 35. Carney RM , Freedland KE . Depression and coronary heart disease. Nat Rev Cardiol 2017;14:145–55. [doi:10.1038/nrcardio.2016.181](http://dx.doi.org/10.1038/nrcardio.2016.181) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1038/nrcardio.2016.181&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=27853162&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 36. Hare DL , Toukhsati SR , Johansson P , et al . Depression and cardiovascular disease: a clinical review. Eur Heart J 2014;35:1365–72. [doi:10.1093/eurheartj/eht462](http://dx.doi.org/10.1093/eurheartj/eht462) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1093/eurheartj/eht462&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=24282187&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=000337976300008&link_type=ISI) 37. Zhao JL , Jiang WT , Wang X , et al . Exercise, brain plasticity, and depression. CNS Neurosci Ther 2020;26:885–95. [doi:10.1111/cns.13385](http://dx.doi.org/10.1111/cns.13385) 38. Stubbs B , Vancampfort D , Hallgren M , et al . EPA guidance on physical activity as a treatment for severe mental illness: a meta-review of the evidence and position statement from the European Psychiatric Association (EPA), supported by the International organization of physical therapists in mental health (IOPTMH). Eur Psychiatry 2018;54:124–44. [doi:10.1016/j.eurpsy.2018.07.004](http://dx.doi.org/10.1016/j.eurpsy.2018.07.004) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.eurpsy.2018.07.004&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=30257806&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 39. Cooney GM , Dwan K , Greig CA , et al . Exercise for depression. Cochrane Database Syst Rev 2013.:CD004366. [doi:10.1002/14651858.CD004366.pub6](http://dx.doi.org/10.1002/14651858.CD004366.pub6) 40. Naczenski LM , de Vries JD , van Hooff MLM , et al . Systematic review of the association between physical activity and burnout. J Occup Health 2017;59:477–94. [doi:10.1539/joh.17-0050-RA](http://dx.doi.org/10.1539/joh.17-0050-RA) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 41. Semkovska M , Quinlivan L , O’Grady T , et al . Cognitive function following a major depressive episode: a systematic review and meta-analysis. Lancet Psychiatry 2019;6:851–61. [doi:10.1016/S2215-0366(19)30291-3](http://dx.doi.org/10.1016/S2215-0366(19)30291-3) 42. Deligkaris P , Panagopoulou E , Montgomery AJ , et al . Job burnout and cognitive functioning: a systematic review. Work Stress 2014;28:107–23. [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=000335117800001&link_type=ISI) 43. Buschert V , Prochazka D , Bartl H , et al . Effects of physical activity on cognitive performance: a controlled clinical study in depressive patients. Eur Arch Psychiatry Clin Neurosci 2019;269:555–63. [doi:10.1007/s00406-018-0916-0](http://dx.doi.org/10.1007/s00406-018-0916-0) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1007/s00406-018-0916-0&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 44. Imboden C , Gerber M , Beck J , et al . Aerobic exercise or stretching as add-on to inpatient treatment of depression: similar antidepressant effects on depressive symptoms and larger effects on working memory for aerobic exercise alone. J Affect Disord 2020;276:866–76. [doi:10.1016/j.jad.2020.07.052](http://dx.doi.org/10.1016/j.jad.2020.07.052) 45. Söllner W , Hertle C . Multimodale behandlung von burnout. PiD - Psychotherapie Im Dialog 2018;19:38–43. [doi:10.1055/a-0651-9958](http://dx.doi.org/10.1055/a-0651-9958) 46. Zapata-Lamana R , Lalanza JF , Losilla JM , et al . mHealth technology for ecological momentary assessment in physical activity research: a systematic review. PeerJ 2020;8:e8848. [doi:10.7717/peerj.8848](http://dx.doi.org/10.7717/peerj.8848) 47. Shiffman S , Stone AA , Hufford MR . Ecological momentary assessment. Annu Rev Clin Psychol 2008;4:1–32. [doi:10.1146/annurev.clinpsy.3.022806.091415](http://dx.doi.org/10.1146/annurev.clinpsy.3.022806.091415) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1146/annurev.clinpsy.3.022806.091415&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=18509902&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=000255649100002&link_type=ISI) 48. Colombo D , Fernández-Álvarez J , Patané A , et al . Current state and future directions of technology-based ecological momentary assessment and intervention for major depressive disorder: a systematic review. J Clin Med 2019;8:465. [doi:10.3390/jcm8040465](http://dx.doi.org/10.3390/jcm8040465) 49. Stavrakakis N , Booij SH , Roest AM , et al . Temporal dynamics of physical activity and affect in depressed and nondepressed individuals. Health Psychol 2015;34S:1268–77. [doi:10.1037/hea0000303](http://dx.doi.org/10.1037/hea0000303) 50. Kanning M , Schlicht W . Be active and become happy: an ecological momentary assessment of physical activity and mood. J Sport Exerc Psychol 2010;32:253–61. [doi:10.1123/jsep.32.2.253](http://dx.doi.org/10.1123/jsep.32.2.253) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=20479481&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=000277166600007&link_type=ISI) 51. Difrancesco S , Lamers F , Riese H , et al . Sleep, circadian rhythm, and physical activity patterns in depressive and anxiety disorders: a 2-week ambulatory assessment study. Depress Anxiety 2019;36:975–86. [doi:10.1002/da.22949](http://dx.doi.org/10.1002/da.22949) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 52. Janurek J , Abdel Hadi S , Mojzisch A , et al . The association of the 24 hour distribution of time spent in physical activity, work, and sleep with emotional exhaustion. Int J Environ Res Public Health 2018;15:1927. [doi:10.3390/ijerph15091927](http://dx.doi.org/10.3390/ijerph15091927) 53. Vandenbroucke JP , von Elm E , Altman DG , et al . Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. Ann Intern Med 2007;147:W163–94. [doi:10.7326/0003-4819-147-8-200710160-00010-w1](http://dx.doi.org/10.7326/0003-4819-147-8-200710160-00010-w1) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.7326/0003-4819-147-8-200710160-00010-w1&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=17938389&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=000250437100017&link_type=ISI) 54. Quintana DS , Alvares GA , Heathers JAJ . Guidelines for reporting articles on psychiatry and heart rate variability (GRAPH): recommendations to advance research communication. Transl Psychiatry 2016;6:e803. [doi:10.1038/tp.2016.73](http://dx.doi.org/10.1038/tp.2016.73) 55. Sheehan DV , Lecrubier Y , Sheehan KH , et al . The mini-International neuropsychiatric interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998;59 Suppl 20:22–33;. [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 56. Sarlon J , Plaszczyk S , Engel S , et al . Electrophysiological parameters as biomarkers for psychiatry: intra-individual variability and influencing factors. Int J Psychophysiol 2018;123:42–7. [doi:10.1016/j.ijpsycho.2017.11.011](http://dx.doi.org/10.1016/j.ijpsycho.2017.11.011) 57. Rosenbaum S , Ward PB , International Working Group . The simple physical activity questionnaire. Lancet Psychiatry 2016;3. [doi:10.1016/S2215-0366(15)00496-4](http://dx.doi.org/10.1016/S2215-0366(15)00496-4) 58. Rosenbaum S , Morell R , Abdel-Baki A , et al . Assessing physical activity in people with mental illness: 23-country reliability and validity of the simple physical activity questionnaire (SIMPAQ). BMC Psychiatry 2020;20:108. [doi:10.1186/s12888-020-2473-0](http://dx.doi.org/10.1186/s12888-020-2473-0) 59. Müller A , Claes L , Smits D , et al . Validation of the German version of the exercise dependence scale. Eur J Psychol Assess 2013;29:213–9. [doi:10.1027/1015-5759/a000144](http://dx.doi.org/10.1027/1015-5759/a000144) 60. Downs DS , Hausenblas HA , Nigg CR . Factorial validity and psychometric examination of the exercise dependence scale-revised. Meas Phys Educ Exerc Sci 2004;8:183–201. [doi:10.1207/s15327841mpee0804\_1](http://dx.doi.org/10.1207/s15327841mpee0804_1) 61. Zeeck A , Schlegel S , Giel KE , et al . Validation of the German version of the commitment to exercise scale. Psychopathology 2017;50:146–56. [doi:10.1159/000455929](http://dx.doi.org/10.1159/000455929) 62. Davis C , Brewer H , Ratusny D . Behavioral frequency and psychological commitment: necessary concepts in the study of excessive exercising. J Behav Med 1993;16:611–28. [doi:10.1007/BF00844722](http://dx.doi.org/10.1007/BF00844722) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1007/BF00844722&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=8126715&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=A1993MP31200004&link_type=ISI) 63. Burisch M . Überblick Über Das hamburger burnout-Inventar (HBI). in: Burisch M, editor. HBI - hamburger burnout-Inventar: manual. Berlin, Heidelberg Springer Berlin Heidelberg; 2020.1. 64. Schilling R , Colledge F , Brand S , et al . Psychometric properties and convergent validity of the Shirom-Melamed burnout measure in two German-speaking samples of adult workers and police officers. Front Psychiatry 2019;10:536. [doi:10.3389/fpsyt.2019.00536](http://dx.doi.org/10.3389/fpsyt.2019.00536) 65. Melamed S , Shirom A , Toker S , et al . Burnout and risk of type 2 diabetes: a prospective study of apparently healthy employed persons. Psychosom Med 2006;68:863–9. [doi:10.1097/01.psy.0000242860.24009.f0](http://dx.doi.org/10.1097/01.psy.0000242860.24009.f0) [Abstract/FREE Full Text](http://bmjopen.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoicHN5Y2htZWQiO3M6NToicmVzaWQiO3M6ODoiNjgvNi84NjMiO3M6NDoiYXRvbSI7czoyNjoiL2Jtam9wZW4vMTQvNi9lMDgxMjk5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 66. Wang YP , Gorenstein C . Psychometric properties of the Beck depression inventory-II: a comprehensive review. Braz J Psychiatry 2013;35:416–31. [doi:10.1590/1516-4446-2012-1048](http://dx.doi.org/10.1590/1516-4446-2012-1048) 67. Kühner C , Bürger C , Keller F , et al . Reliabilität und validität des revidierten beck-depressionsinventars (BDI-II). Nervenarzt 2007;78:651–6. [doi:10.1007/s00115-006-2098-7](http://dx.doi.org/10.1007/s00115-006-2098-7) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1007/s00115-006-2098-7&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=16832698&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=000247724900004&link_type=ISI) 68. Beck AT , Steer RA , Carbin MG . Psychometric properties of the Beck depression inventory: twenty-five years of evaluation. Clinical Psychology Review 1988;8:77–100. [doi:10.1016/0272-7358(88)90050-5](http://dx.doi.org/10.1016/0272-7358(88)90050-5) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/0272-7358(88)90050-5&link_type=DOI) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=A1988L913100004&link_type=ISI) 69. Kopp MS , Falger PR , Appels A , et al . Depressive symptomatology and vital exhaustion are differentially related to behavioral risk factors for coronary artery disease. Psychosom Med 1998;60:752–8. [doi:10.1097/00006842-199811000-00018](http://dx.doi.org/10.1097/00006842-199811000-00018) [Abstract/FREE Full Text](http://bmjopen.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoicHN5Y2htZWQiO3M6NToicmVzaWQiO3M6ODoiNjAvNi83NTIiO3M6NDoiYXRvbSI7czoyNjoiL2Jtam9wZW4vMTQvNi9lMDgxMjk5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 70. Schnorpfeil P , Noll A , Wirtz P , et al . Assessment of exhaustion and related risk factors in employees in the manufacturing industry–a cross-sectional study. Int Arch Occup Environ Health 2002;75:535–40. [doi:10.1007/s00420-002-0369-6](http://dx.doi.org/10.1007/s00420-002-0369-6) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=12373315&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 71. Appels A , Höppener P , Mulder P . A questionnaire to assess premonitory symptoms of myocardial infarction. Int J Cardiol 1987;17:15–24. [doi:10.1016/0167-5273(87)90029-5](http://dx.doi.org/10.1016/0167-5273(87)90029-5) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/0167-5273(87)90029-5&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=3666994&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=A1987K202300003&link_type=ISI) 72. Buysse DJ , Reynolds CF , Monk TH , et al . The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Research 1989;28:193–213. [doi:10.1016/0165-1781(89)90047-4](http://dx.doi.org/10.1016/0165-1781(89)90047-4) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/0165-1781(89)90047-4&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=2748771&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=A1989AB69000008&link_type=ISI) 73. Beck AT , Epstein N , Brown G , et al . An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 1988;56:893–7. [doi:10.1037//0022-006x.56.6.893](http://dx.doi.org/10.1037//0022-006x.56.6.893) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1037/0022-006X.56.6.893&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=3204199&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=A1988R143600017&link_type=ISI) 74. Geissner E , Huetteroth A . Beck anxiety inventory German version - A reliable, valid, patient friendly instrument for measuring clinical anxiety. Psychother Psychosom Med Psychol 2018;68:118–25. [doi:10.1055/s-0043-122941](http://dx.doi.org/10.1055/s-0043-122941) 75. Derogatis LR , Melisaratos N . The brief symptom inventory: an introductory report. Psychol Med 1983;13:595–605. [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1017/S0033291700048017&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=6622612&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=A1983RG21300014&link_type=ISI) 76. Prinz U , Nutzinger DO , Schulz H , et al . Comparative psychometric analyses of the SCL-90-R and its short versions in patients with affective disorders. BMC Psychiatry 2013;13:104. [doi:10.1186/1471-244X-13-104](http://dx.doi.org/10.1186/1471-244X-13-104) 77. Franz M , Lemke M , Meyer T , et al . Deutsche version der Snaith-Hamilton-pleasure-scale (SHAPS-D). Fortschr Neurol Psychiatr 1998;66:407–13. [doi:10.1055/s-2007-995279](http://dx.doi.org/10.1055/s-2007-995279) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=9782420&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=000076164500004&link_type=ISI) 78. Nakonezny PA , Morris DW , Greer TL , et al . Evaluation of Anhedonia with the Snaith–Hamilton pleasure scale (SHAPS) in adult outpatients with major depressive disorder. J Psychiatr Res 2015;65:124–30. [doi:10.1016/j.jpsychires.2015.03.010](http://dx.doi.org/10.1016/j.jpsychires.2015.03.010) 79. Steyer R , Schwenkmezger P , Notz P , et al . Der Mehrdimensionale Befindlichkeitsfragebogen MDBF [Multidimensional mood questionnaire]. Göttingen, Germany Hogrefe; 1997. 80. Hinz A , Daig I , Petrowski K , et al . Mood in the German population: norms of the multidimensional mood questionnaire MDBF. Psychother Psychosom Med Psychol 2012;62:52–7. [doi:10.1055/s-0031-1297960](http://dx.doi.org/10.1055/s-0031-1297960) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1055/s-0031-1297960&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=22271232&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 81. Stergiou GS , Palatini P , Parati G , et al . European society of hypertension practice guidelines for office and out-of-office blood pressure measurement. J Hypertens 2021;39:1293–302. [doi:10.1097/HJH.0000000000002843](http://dx.doi.org/10.1097/HJH.0000000000002843) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=33710173&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 82. Van Bortel LM , Laurent S , Boutouyrie P , et al . Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 2012;30:445–8. [doi:10.1097/HJH.0b013e32834fa8b0](http://dx.doi.org/10.1097/HJH.0b013e32834fa8b0) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1097/HJH.0b013e32834fa8b0&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=22278144&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=000300412400001&link_type=ISI) 83. Dörr M , Richter S , Eckert S , et al . Invasive validation of Antares, a new algorithm to calculate central blood pressure from Oscillometric upper arm pulse waves. J Clin Med 2019;8:1073. [doi:10.3390/jcm8071073](http://dx.doi.org/10.3390/jcm8071073) 84. ASTRAND PO , RYHMING I . A Nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work. J Appl Physiol 1954;7:218–21. [doi:10.1152/jappl.1954.7.2.218](http://dx.doi.org/10.1152/jappl.1954.7.2.218) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1152/jappl.1954.7.2.218&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=13211501&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=A1954YD46600017&link_type=ISI) 85. Åstrand I . Aerobic work capacity in men and women: with special reference to age. In: Acta physiologica Scandinavica: Supplementum. 169. Kung. Gymnastiska Centralinst. Department of Physiology, 1960: 1–92. 86. Noonan V , Dean E . Submaximal exercise testing: clinical application and interpretation. Phys Ther 2000;80:782–807. [doi:10.1093/ptj/80.8.782](http://dx.doi.org/10.1093/ptj/80.8.782) [Abstract/FREE Full Text](http://bmjopen.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToicHRqb3VybmFsIjtzOjU6InJlc2lkIjtzOjg6IjgwLzgvNzgyIjtzOjQ6ImF0b20iO3M6MjY6Ii9ibWpvcGVuLzE0LzYvZTA4MTI5OS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 87. Nordgren B , Fridén C , Jansson E , et al . Criterion validation of two submaximal aerobic fitness tests, the self-monitoring Fox-walk test and the Åstrand cycle test in people with rheumatoid arthritis. BMC Musculoskelet Disord 2014;15:305. [doi:10.1186/1471-2474-15-305](http://dx.doi.org/10.1186/1471-2474-15-305) 88. Rahman MS , Helgadóttir B , Hallgren M , et al . Cardiorespiratory fitness and response to exercise treatment in depression. BJPsych Open 2018;4:346–51. [doi:10.1192/bjo.2018.45](http://dx.doi.org/10.1192/bjo.2018.45) 89. Borg G . Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Health 1990;16:55–8. [doi:10.5271/sjweh.1815](http://dx.doi.org/10.5271/sjweh.1815) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.5271/sjweh.1815&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=2345867&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=A1990DD09500009&link_type=ISI) 90. Pan J , Tompkins WJ . A real-time QRS detection algorithm. IEEE Trans Biomed Eng 1985;32:230–6. [doi:10.1109/TBME.1985.325532](http://dx.doi.org/10.1109/TBME.1985.325532) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1109/TBME.1985.325532&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=3997178&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=A1985AHR8400007&link_type=ISI) 91. Tarvainen MP , Niskanen J-P , Lipponen JA , et al . Heart rate variability analysis software. Comput Methods Programs Biomed 2014;113:210–20. [doi:10.1016/j.cmpb.2013.07.024](http://dx.doi.org/10.1016/j.cmpb.2013.07.024) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.cmpb.2013.07.024&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=24054542&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 92. Lipponen JA , Tarvainen MP . A robust algorithm for heart rate variability time series Artefact correction using novel beat classification. J Med Eng Technol 2019;43:173–81. [doi:10.1080/03091902.2019.1640306](http://dx.doi.org/10.1080/03091902.2019.1640306) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1080/03091902.2019.1640306&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 93. Laborde S , Mosley E , Thayer JF . Heart rate variability and cardiac vagal tone in Psychophysiological research - recommendations for experiment planning, data analysis, and data reporting. Front Psychol 2017;8:213. [doi:10.3389/fpsyg.2017.00213](http://dx.doi.org/10.3389/fpsyg.2017.00213) 94. Michael S , Graham KS , Davis GMO . Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals-A review. Front Physiol 2017;8:301. [doi:10.3389/fphys.2017.00301](http://dx.doi.org/10.3389/fphys.2017.00301) 95. Rogers B , Gronwald T . Fractal correlation properties of heart rate variability as a biomarker for intensity distribution and training prescription in endurance exercise: an update. Front Physiol 2022;13:879071. [doi:10.3389/fphys.2022.879071](http://dx.doi.org/10.3389/fphys.2022.879071) 96. Trimmel M . Relationship of heart rate variability (HRV) parameters including pNNxx with the subjective experience of stress, depression, well-being, and every-day trait moods (TRIM-T): a pilot study. TOERGJ 2015;8:32–7. [doi:10.2174/1875934301508010032](http://dx.doi.org/10.2174/1875934301508010032) 97. Leistedt SJ-J , Linkowski P , Lanquart J-P , et al . Decreased neuroautonomic complexity in men during an acute major depressive episode: analysis of heart rate dynamics. Transl Psychiatry 2011;1:e27. [doi:10.1038/tp.2011.23](http://dx.doi.org/10.1038/tp.2011.23) 98. McIntyre RS , Best MW , Bowie CR , et al . The THINC-integrated tool (THINC-it) screening assessment for cognitive dysfunction: validation in patients with major depressive disorder. J Clin Psychiatry 2017;78:873–81. [doi:10.4088/JCP.16m11329](http://dx.doi.org/10.4088/JCP.16m11329) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 99. Zhang W , Zhu N , Lai J , et al . Reliability and validity of THINC-it in evaluating cognitive function of patients with bipolar depression. Neuropsychiatr Dis Treat 2020;16:2419–28. [doi:10.2147/NDT.S266642](http://dx.doi.org/10.2147/NDT.S266642) 100. McIntyre RS , Subramaniapillai M , Park C , et al . The THINC-it tool for cognitive assessment and measurement in major depressive disorder: sensitivity to change. Front Psychiatry 2020;11:546. [doi:10.3389/fpsyt.2020.00546](http://dx.doi.org/10.3389/fpsyt.2020.00546) 101. Wyss T , Marti B , Rossi S , et al . Assembling and verification of a fitness test battery for the recruitment of the Swiss army and nation-wide use. Schweizerische Zeitschrift Für Sportmedizin Und Sporttraumatologie 2007;55:126–31. 102. Csuka M , McCarty DJ . Simple method for measurement of lower extremity muscle strength. Am J Med 1985;78:77–81. [doi:10.1016/0002-9343(85)90465-6](http://dx.doi.org/10.1016/0002-9343(85)90465-6) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/0002-9343(85)90465-6&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=3966492&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=A1985TZ32900018&link_type=ISI) 103. Kuh D , Bassey EJ , Butterworth S , et al . Postural control, and functional leg power in a representative cohort of British men and women: associations with physical activity, health status, and socioeconomic conditions. J Gerontol A Biol Sci Med Sci 2005;60:224–31. [doi:10.1093/gerona/60.2.224](http://dx.doi.org/10.1093/gerona/60.2.224) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1093/gerona/60.2.224&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=15814867&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=000228283600016&link_type=ISI) 104. Trampisch US , Franke J , Jedamzik N , et al . Optimal Jamar Dynamometer handle position to assess maximal Isometric hand grip strength in epidemiological studies. J Hand Surg Am 2012;37:2368–73. [doi:10.1016/j.jhsa.2012.08.014](http://dx.doi.org/10.1016/j.jhsa.2012.08.014) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.jhsa.2012.08.014&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 105.1. 2. Casanova JS Fess F . Grip strength. In: Casanova JS , ed. Clinical assessment recommendations. 1992: 41–5. 106. Ha Y-C , Hwang S-C , Song S-Y , et al . Hand grip strength measurement in different epidemiologic studies using various methods for diagnosis of Sarcopenia: a systematic review. Eur Geriatr Med 2018;9:277–88. [doi:10.1007/s41999-018-0050-6](http://dx.doi.org/10.1007/s41999-018-0050-6) 107. Watanabe T , Owashi K , Kanauchi Y , et al . The short-term reliability of grip strength measurement and the effects of posture and grip span. J Hand Surg Am 2005;30:603–9. [doi:10.1016/j.jhsa.2004.12.007](http://dx.doi.org/10.1016/j.jhsa.2004.12.007) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.jhsa.2004.12.007&link_type=DOI) 108. Pavey TG , Gomersall SR , Clark BK , et al . The validity of the Geneactiv wrist-worn accelerometer for measuring adult sedentary time in free living. J Sci Med Sport 2016;19:395–9. [doi:10.1016/j.jsams.2015.04.007](http://dx.doi.org/10.1016/j.jsams.2015.04.007) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 109. Esliger DW , Rowlands AV , Hurst TL , et al . Validation of the GENEA accelerometer. Med Sci Sports Exerc 2011;43:1085–93. [doi:10.1249/MSS.0b013e31820513be](http://dx.doi.org/10.1249/MSS.0b013e31820513be) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1249/MSS.0b013e31820513be&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=21088628&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=000290657300022&link_type=ISI) 110. Jenkins CA , Tiley LCF , Lay I , et al . Comparing Geneactiv against Actiwatch-2 over seven nights using a common sleep scoring algorithm and device-specific wake thresholds. Behav Sleep Med 2022;20:369–79. [doi:10.1080/15402002.2021.1924175](http://dx.doi.org/10.1080/15402002.2021.1924175) 111. Herrmann SD , Barreira TV , Kang M , et al . How many hours are enough? Accelerometer wear time may provide bias in daily activity estimates. J Phys Act Health 2013;10:742–9. [doi:10.1123/jpah.10.5.742](http://dx.doi.org/10.1123/jpah.10.5.742) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=23036822&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 112. Mattingly SM , Gregg JM , Audia P , et al . The Tesserae project. Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems; 2019:1–8. 113. Lenaert B , van Kampen N , van Heugten C , et al . Real-time measurement of post-stroke fatigue in daily life and its relationship with the retrospective fatigue severity scale. Neuropsychol Rehabil 2022;32:992–1006. [doi:10.1080/09602011.2020.1854791](http://dx.doi.org/10.1080/09602011.2020.1854791) 114.1. 2. Bachmann A , 3. Klebsattel C , 4. Budde M , eds. How to use Smartphones for less obtrusive ambulatory mood assessment and mood recognition. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers; 2015 115. Fliege H , Rose M , Arck P , et al . Validierung des 'Perceived Stress Questionnaire'(PSQ) an Einer Deutschen Stichprobe. [Validation of the “Perceived Stress Questionnaire”(PSQ) in a German sample]. Diagnostica 2001;47:142–52. [doi:10.1026//0012-1924.47.3.142](http://dx.doi.org/10.1026//0012-1924.47.3.142) 116. Levenstein S , Prantera C , Varvo V , et al . Development of the perceived stress questionnaire: a new tool for psychosomatic research. J Psychosom Res 1993;37:19–32. [doi:10.1016/0022-3999(93)90120-5](http://dx.doi.org/10.1016/0022-3999(93)90120-5) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/0022-3999(93)90120-5&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=8421257&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=A1993KG30400003&link_type=ISI) 117. Caldwell YT , Steffen PR . Adding HRV Biofeedback to psychotherapy increases heart rate variability and improves the treatment of major depressive disorder. Int J Psychophysiol 2018;131:96–101. [doi:10.1016/j.ijpsycho.2018.01.001](http://dx.doi.org/10.1016/j.ijpsycho.2018.01.001) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 118. Kim W , Lim S-K , Chung E-J , et al . The effect of cognitive behavior therapy-based psychotherapy applied in a forest environment on physiological changes and remission of major depressive disorder. Psychiatry Investig 2009;6:245. [doi:10.4306/pi.2009.6.4.245](http://dx.doi.org/10.4306/pi.2009.6.4.245) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=20140122&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 119. Prasko J , Latalova K , Diveky T , et al . Panic disorder, autonomic nervous system and dissociation–changes during therapy. Neuro Endocrinol Lett 2011;32:641–51. [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=22167145&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 120. Harris PA , Taylor R , Minor BL , et al . The REDCap consortium: building an international community of software platform partners. J Biomed Inform 2019;95:103208. [doi:10.1016/j.jbi.2019.103208](http://dx.doi.org/10.1016/j.jbi.2019.103208) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.jbi.2019.103208&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=31078660&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 121. Harris PA , Taylor R , Thielke R , et al . Research electronic data capture (REDCap)—A Metadata-driven methodology and workflow process for providing translational research Informatics support. J Biomed Inform 2009;42:377–81. [doi:10.1016/j.jbi.2008.08.010](http://dx.doi.org/10.1016/j.jbi.2008.08.010) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.jbi.2008.08.010&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=18929686&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) [Web of Science](http://bmjopen.bmj.com/lookup/external-ref?access_num=000264958800018&link_type=ISI) 122. Menyhart O , Weltz B , Győrffy B . Multipletesting.com: a tool for life science researchers for multiple hypothesis testing correction. PLoS One 2021;16:e0245824. [doi:10.1371/journal.pone.0245824](http://dx.doi.org/10.1371/journal.pone.0245824) 123. Félix VB , Menezes AFB . Comparisons of ten corrections methods for T-test in multiple comparisons via Monte Carlo study. Electron J Appl Stat Anal 2018;11:74–91. 124. Voss A , Schroeder R , Heitmann A , et al . Short-term heart rate variability—influence of gender and age in healthy subjects. PLoS One 2015;10:e0118308. [doi:10.1371/journal.pone.0118308](http://dx.doi.org/10.1371/journal.pone.0118308) 125. Koskinen T , Kähönen M , Jula A , et al . Short-term heart rate variability in healthy young adults: the cardiovascular risk in young Finns study. Auton Neurosci 2009;145:81–8. [doi:10.1016/j.autneu.2008.10.011](http://dx.doi.org/10.1016/j.autneu.2008.10.011) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.autneu.2008.10.011&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=19019739&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 126. Strüven A , Holzapfel C , Stremmel C , et al . Obesity, nutrition and heart rate variability. Int J Mol Sci 2021;22:4215. [doi:10.3390/ijms22084215](http://dx.doi.org/10.3390/ijms22084215) 127. Koenig J , Jarczok MN , Kuhn W , et al . Impact of caffeine on heart rate variability: a systematic review. J Caffeine Res 2013;3:22–37. [doi:10.1089/jcr.2013.0009](http://dx.doi.org/10.1089/jcr.2013.0009) 128. Dinas PC , Koutedakis Y , Flouris AD . Effects of active and passive tobacco cigarette smoking on heart rate variability. Int J Cardiol 2013;163:109–15. [doi:10.1016/j.ijcard.2011.10.140](http://dx.doi.org/10.1016/j.ijcard.2011.10.140) [CrossRef](http://bmjopen.bmj.com/lookup/external-ref?access_num=10.1016/j.ijcard.2011.10.140&link_type=DOI) [PubMed](http://bmjopen.bmj.com/lookup/external-ref?access_num=22100604&link_type=MED&atom=%2Fbmjopen%2F14%2F6%2Fe081299.atom) 129. Gronwald T , Hoos O . Correlation properties of heart rate variability during endurance exercise: a systematic review. Ann Noninvasive Electrocardiol 2020;25:e12697. [doi:10.1111/anec.12697](http://dx.doi.org/10.1111/anec.12697)